
J .  Fluid Mech. (1984), vol. 140, 91-111 

Printed in Great Britain 

91 

The dynamics of thin liquid jets in air 
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The dynamics of propagation and disintegration of laminar liquid jets moving in air 
has been investigated theoretically. It is assumed that the jet is thin, i.e. the ratio 
of the characteristic transverse size to the longitudinal one is small. It is assumed 
also that the lateral surface of the jet is free of shearing forces and is ‘almost free’ 
of normal ones in the sense that the normal tractions other than isotropic pressure 
are small in comparison with the internal stresses acting in the jet cross-section. 

Asymptotic yuasi-one-dimensional equations of the continuity, momentum and 
moment of momentum of liquid motion in the jet have been derived. These equations 
were used as a basis for studying the process of growth of long-wave bending 
(transverse) disturbances of high-velocity jets of circular cross-section during their 
motion through air. The instability condition has been obtained and the growth rate 
of small bending disturbances of the jet has been found ; the evolution of the jet shape 
a t  the stage of finite disturbances is investigated. 

1. Introduction 
The hydrodynamics of liquid jets has long attracted the attention of investigators. 

The phenomena of propagation and disintegration of jets arouse interest not only by 
their beauty but also by the possibility of wide application. The main objectives of 
the theory are to establish the character of disintegration of a jet and to calculate 
the length of its unbroken part and the size of drops into which the jet breaks up. 
These characteristics are determined by the mechanism of the growth of disturbances 
in the jet. 

The capillary mechanism predominant in thin jets is associated with the intrinsic 
properties of a liquid : the disintegration is determined by the action of surface-tension 
forces, which tend to decrease the free surface by dividing the jet into drops. The 
results most important for describing this kind of disintegration were obtained by 
Rayleigh (1878) and Weber (1931). 

Another mechanism is associated with the interaction of a jet with the ambient 
medium (e.g. air) and is predominant for high-velocity laminar jets which break up 
as a result of the growth of bending disturbances of the jet axis (Haenlein 1932 ; Tyler 
& Richardson 1925; Tyler & Watkin 1932; Grant & Middleman 1966; Sterling & 
Sleicher 1975). 

The theoretical study of the dynamics of bending disturbances of liquid jets was 
initiated by Weber (1931), Middleman & Gavis (1965), Debye & Daen (1959) and 
Buckmaster (1973). This involves a very intricate problem of the dynamic effect of 
the air flow on the surface of a jet, unknown beforehand, the flow in which is also 
to be determined. The solution of the problem on the basis of general three-dimensional 
hydrodynamic equations involves great difficulties. Along these lines, therefore, it 
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becomes possible to investigate only small deviations from the initial cylindrical shape 
of a jet, as was done by Debye & Daen (1959) for the inviscid liquid. 

In  the problems of the theory of liquid jets i t  is natural to use simplified 
quasi-one-dimensional equations which take into account the characteristic features 
of the flow, notably the jet slenderness. Such studies have appeared recently along 
with the theories of jet disintegration based on three-dimensional equations of fluid 
mechanics. Elements of the one-dimensional approach can be found in the papers by 
Trouton (1906), Weber (1931), Levi-Civita (1932), Ericksen (1952), and Levich (1962). 
One-dimensional equations were used by Kase & Matsuo (1965) and Matovich & 
Pearson (1969) to describe the flow in viscosity-dominated liquid filaments, by Lee 
(1974) to predict the capillary disintegration of ideal liquid jets and by Entov et al. 
(1980a, b )  to investigate the disintegration of capillary jets of highly viscous and 
non-Newtonian liquids. In  the papers by Green & Laws (1966, 1968), Green, Laws 
& Naghdi (1968), Green, Naghdi & Wenners (1974a, b) ,  Green (1975,1976) and Naghdi 
(1979) a theory has been developed which regards a liquid jet as a Cosserat line. I n  
these papers a closed system of one-dimensional equations has been obtained for 
straight viscous liquid jets and for ideal liquid jets. This system was used by Bogy 
(1978a,b, 1979a,b) to describe the formation of satellite drops in the capillary 
disintegration of jets. There are also studies where one-dimensional equations are 
derived from the variational d’illembert-lagrange principle (Khusid 1979) and 
studies in which the jet slenderness is used to describe the flow in the boundary-layer 
approximation (Markova & Shkadov 1972). 

The question of construction of one-dimensional equations suitable for the 
description of both capillary and bending disturbances remains open. The derivation 
of such a system of equations and its subsequent solution in the case of bending 
disturbances is the main objective of the present paper which is based on our previous 
works (Entov & Yarin, 1979, 1980). 
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2. Geometric and kinematic relations 
Consider a smooth time-dependent three-dimensional curve T(t) given parametri- 

cally by the equation r = R(s,  t ) ,  s- < s < s+, where s is an arbitrary parameter and 
t is time, and call it  the jet axis. With each point O(s,t)  of the curve we associate 
the normal plane yOz by directing the axis Oy along the unit principal-normal vector 
n and Oz along the unit binormal vector b to r(t) a t  the point 0. Consider in the plane 
of variables (y,z) a set of simply connected domains 9 ( s , t )  which is continuously 
dependent on s and t .  The domain 9(s ,  t )  has the point 0 as the centre of gravity. 
Let us call 9 (s ,  t )  the cross-section of the jet at a point s a t  an instant t .  This definition 
implies that the cross-section of the liquid volume of the jet by a plane normal to 
the jet axis coincides with 9($, t )  at the point s at the instant t .  These conditions are 
sketched in figure 1 .  

If d is the diameter of the domain 9 then the jet is considered thin subject to the 
condition that 

E = max - , k d , ~ d  < 1, c 1 
where I is the lengthscale along the jet axis, k is the curvature and K is the torsion 
of the axis. The position of a point (or a liquid particle) in the jet is determined by 
three parameters pi, i = 1 ,  2, 3, q1 = y, q2 = z ,  q3 = s, which serve as coordinates in 
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FIGURE 1. Sketch of the segment of the jet, with frame of reference. 

a mobile curvilinear (non-orthogonal in the case K $. 0) coordinate system with 
contravariant basis vectors d: 

r(y, z, s ,  t )  = R(s,  t )  + y n ( s ,  t )  + zb(s, t )  = R(s ,  t )  + x, 

Here 'T is the unit tangent vector of the jet axis. 
We use the following definition of the gradient tensor V w :  dw = ( V ~ ) ~ * d x ,  where 

w = w ( x )  is an arbitrary vector (another definition of the gradient tensor is also 
possible: dw = Vw-dx; see e.g. Astarita & Marrucci 1974, p. 21). This definition is 
convenient in that i t  enables one to introduce the dyadic gradient operator V 

At each point of the liquid jet two velocities are defined: the velocity u of motion 
of a point with fixed coordinates ( y ,  z, s) (the velocity of frame of reference associated 
with the jet) and the velocity u of motion of a liquid particle: 

dR dt I aR u = u(O,O, 5, t )  = -, v = u ( O , O ,  5, t )  = -. 
at 
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It can readily be seen that V is the velocity of the liquid in the centre of gravity of 
the jet cross-section and v2 is the nonlinear part of the expansion of the velocity v 
in y and z .  For slender jets and sufficiently viscous liquids the contribution of v, must 
be in a sense small for obvious reasons. So the velocity profile is represented to a high 
degree of accuracy as a superposition of translational motion together with the centre 
of gravity, rigid-body rotation around i t  and afine deformation. 

The position of the jet axis can be described by various methods. I n  particular, 
let us assume that the jet motion is such that the tangent to the jet axis at any instant 
and a t  all points makes an acute angle with a straight line 0,t. Then we can introduce 
a Cartesian coordinate system 0, 576 with unit vectors i, j ,  k and describe the jet axis 
by the equations 

E = s, T,I = H(s ,  t ) ,  5 = Z(s, t ) ,  R = is+jH+ kZ, 

t = h - l ( i + H , , j + Z , , k ) ,  h = ( l + H ~ , + Z ~ , ) ~ ,  1 (2 .5)  

where H and Z are displacements of the jet axis in the directions 0 , ~  and 0, <. 
Next we have 

- v =  u+ wr, R,,= U = H , , j + Z , , k ,  -- dR 
dt 

ds ds W = h - - ,  - = p i  
dt dt 

(it can be shown that h V*i = V,- U7). 

n ,  b and t are marked by the corresponding subscripts. 

field on the jet axis 

Hereinafter the projections of the vectors onto the directions of the unit vectors 

Expressions (2.6) relate the evolution of the jet axis a t  any instant to the velocity 

- V - t h ( P i ) .  (2.7) at 
aR _ -  

The relations (2.5) and the fourth equation in (2.6) explicitly use the parametrization 
of the jet axis chosen here. I n  certain circumstances a different choice of the 
parameter s is required (see §7) ,  which leads to a change in the above-mentioned 
kinematic relations. 

The derivatives anlat, ablat and a t l a t  can be related to  the evolution of the radius 
vector of the jet axis R with the aid of simple geometric considerations and, 
consequently, to the velocity field on the jet axis by using the kinematic relation (2.7). 

For the curvature and torsion of the jet axis there are relations known from 
differential geometry. 

3. Dynamic equations 
Now turn to the derivation of asymptotic equations of the continuity, momentum 

and moment' of momentum of a liquid in the jet. The mass of liquid between two 
cross-sections s1 and s, is 

where p is density. As a result of the motion of the jet cross-section with a fixed value 
of s ,  the transfer of mass (as well as momentum and moment of momentum) through 
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it occurs a t  a velocity ( V - U ) . ~  = v, - u,. The mass flux through the jet cross-section 
9(s , t )  is r 

The rate of change in the liquid mass enclosed between the cross-sections s1 and s2 
is equal to the difference of the mass fluxes through these cross-sections. As s2 tends 
to sl, we obtain the differential continuity equation for the jet (subsequently the liquid 
is considered incompressible) 

(3.3) 

Here f is the area of the jet cross-section. 
Now derive the momentum balance equation for the chosen element of the jet. For 

the momentum between the cross-sections s1 and s2 and the flux of momentum 
through the jet cross-section corresponding to the fixed value of s we have 

J =  fl[ {apvgdS]ds, L = j pv(vT-u7)dS. 
9 

(3.4) 

The stresses acting in the cross-section will be denoted by a7(x, s, t ) .  We also assume 
that external forces F per unit mass and external loads distributed over the lateral 
surface act on the liquid. The resultant action of external loads will be specified by 
the linear density of forces q applied to the jet axis and by moment m per unit length 
of the jet axis. Then the momentum equation takes the form 

~ [ p ~ , v g d ~ S ] + ~ [ p ~ , v ( v , - u , ) d S  1 = - tu, a,dS 1 +pfhF+hq. (3.5) 

The moment-of-momentum balance equation is derived in a similar manner 

In  calculating the moment of mass forces the condition 

j 9 x d S  = 0 

was used. 

thus obtain 
Let us form the vector product of R(s, t )  with (3.5) and subtract it from (3.6). We 

- hp (xxv( l -ky) )dS + U x p h  V(l-ky)dS 
at "[ s 9 1 L 

1 + h p x  s ( ~ ~ v ( ~ , - u , ) ) d f l  
9 

="[s as 
(xxa,)dS]+Arx 24 a ,dS-phk[s~yxdS]xF+hm.  (3.7) 

The next step is to write (3.3), (3.5) and (3.7) asymptotically, retaining in them the 
dominant terms only. 
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Let us take instead of (2.4) a simplified representation of the distribution of liquid 
velocities. Namely, we shall assume that a t  each instant the instantaneous motion 
of the liquid cross-section, which coincides with the normal cross-section of the jet, 
reduces mainly to a combination of the translational motion with the centre of 
gravity, rigid-body rotation around it and isotropic expansion or contraction in the 
cross-sectional plane. This assumption about the character of deformation motion 
is an analogue of the hypothesis of flat cross-sections in the theory of bar bending. 
It is based physically on the fact that the jet is thin and its lateral surface is free 
from shearing forces. 

This assumption may be violated in three main cases. The first one is represented 
by a thin liquid jet with elliptical cross-section. The capillary forces will obviously 
tend to transform the ellipse into a circle. The second case is the circular jet with 
convergent-divergent initial distribution of transverse velocities. In this case the 
circular cross-section will be transformed into the elliptical one. These two cases are 
typical for inviscid jets issuing from non-circular orifices. The interplay between 
capillary and inertial forces gives rise to oscillations, which will eventually decrease 
owing to viscous damping. These two cases are out of the scope of the present theory. 

If the liquid viscosity and jet velocity are high enough so that the action of capillary 
forces is negligible, the present theory applies as well to jets of arbitrary cross-section 
with velocities initially aligned along the jet axis. In  all cases only long-wave 
disturbances are considered. 

The third case is more subtle. It corresponds to a jet compressed laterally along 
a diameter by opposite external loads tending to flatten it. But this flattening is 
counteracted by capillary forces for the thin jet, and in any case is much slower for 
viscous jets than jet bending and (or) uniform extension-compression of jet elements 
as soon as we consider long-wave modes of jet evolution. This is shown by direct 
calculation for Newtonian viscous liquids (see §8),  but can be conjectured to be valid 
for sufficiently ' viscous ' non-Newtonian liquids as well. 

Taking into account the assumption made, we have instead of (2.4) 

u =  V + Q X X + 6 X + U 2 ,  

an ab 
at at u =  u + y - + z - =  U + O X X .  J 

Here f2 is the angular velocity of the liquid cross-section, and the functions @t may 
be expanded in series in y and z ,  starting from the second-order terms; the 
components of the vector w are determined using the expressions for anlat and ablat. 

The expansions (3 .8)  make it possible to evaluate the integrals occurring in the 
obtained balance equations of the jet dynamics. More specifically, for the mass flux 
through the jet cross-section we have 

j (w7-u7)dS= ( V , - U 7 ) . f + ~ - j 1 ,  j ,  = j9uzdB, lj,l = O(~YlV l ) .  (3.9) 
9 

The continuity equation (3.3), after neglecting the small term j17, and noting that 
W = V,- U,, is transformed into 

a h j  ajw 
at as 
-+- = 0. (3.10) 
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The balance equations of momentum and moment of momentum are transformed in 
a similar manner, and, after omitting the higher orders of small quantities, take the 
forms 

(3.11) 

BAK 
-+A[  U x j l  + 7 x ( UjIr +j ,  + Wj,)  - ICU x (Q x j ,  + &)] 

at 
a l a M  1 h + - ( W K l + j 4 x  V) =--+-A7xQ-hkj3xX+-rn,  (3.12) as P as P P 

P = ~ * J  a,dS, Q = J  a,dS-Pr, M = J  x x a , d S ,  
9 9 9 

(3.13) 

(3.16) i (Q x x + 6 ~ )  [ (52 - 0)' (X x z)] dS, 

j 3  = 1 Xy dS = d b  +bib,, j4 = 1 ~ [ ( a -  0)' (X x T)] dX. 
9 9 

The quantities 7P, Q and M represent respectively the longitudinal force, the 
shearing force and the moment of stresses in the jet cross-section. 

4. Closure conditions 
The closure of the obtained system of equations (3.10)-(3.12) involves the use of 

kinematic and geometric relations which relate the evolution of the jet-axis configu- 
ration to the velocity of liquid particles on the axis (see $2) and also the establishment) 
of a connection between the velocity and stress fields in the jet with the liquid 
rheology taken into account. 

We consider here only the case of a viscous Newtonian liquid. I n  this case 

where p is the pressure (deviation from the value p ,  of the unperturbed hydrostatic 
pressure of the ambient air), ,u is the viscosity, g* is the metric tensor, n* is the stress 
tensor, and D* is the strain rate tensor (the case of nonlinearly viscous (power-law) 
liquids is considered in the paper by Yarin ( 1 9 8 2 ~ ) ) .  
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Using the gradient operator (2 .3)  and expression (3.8) for u, we find the components 
of the strain rate tensor (Dab = a.D* .b)  in the form 

Now we obtain expressions for the stresses in the jet using the constitutive equation 
(4.1). We note tentatively that a t  any rheology of liquid for closing the system of 
dynamic equations i t  is necessary to  take into account the condition of absence 
(smallness) of stresses on the jet surface. It can readily be shown that this condition 
for the stresses inside the jet, gives estimates 

The smallness of the stresses cnT and ub7 makes it possible to show that the liquid 
cross-section remains flat in the linear approximation during motion, as assumed in 
the relations (3.8). On the other hand, after omitting the higher orders of small 
quantities, we have grin = ebb( = 0). By virtue of this equality, the deformation of 
the liquid cross-section must be mainly isotropic, as assumed in the relations (3.8). 
It will be confirmed by straightforward calculation for a Newtonian liquid below. 
I n  addition, if we express the components of the stress tensor in terms of kinematic 
characteristics using the rheological equation of state of the liquid, then the estimates 
(4.6) will produce additional restrictions on the kinematics of motion. 

Substituting (4.2) into (4.1) yields the components of the stress tensor in the form 

b (4.7) 



Note that up to now we have not used the assumption that $1 and $2 are quadratic 
in y and z .  From (4.8) and (4.9) it follows immediately that linear terms have the 
form = Az, $2 = -Ay, A = A(s).  It means that the linear part of the field v, 
corresponds to rigid rotation about the jet axis and can be included in Q,. So the 
assumption about the quadratic form of and 42 is justified, and the lateral 
deformation of the jet cross-section is mainly isotropic. 

The estimates (4.6) for the stresses uTn and u , b ,  taking into account (4.7), give 
additional kinematic conditions 

Q = - A -  ' v b , , - K & ,  h - l ~ n , s - K V b I b k V , ,  (4.10) 

used subsequently for closing the system of equations of the problem. I n  this case 
the expressions for the axial values of the stresses and longitudinal force are of the 
form 

zTT = 3/!3(A-'v7,s-kvn), z ; n  = z ; b  = 0, P =  fz,,. (4.11) 

Note that the need for the relations (4.10) arises from the fact that the shearing force 
Q in the cross-section is not determined from the rheological relations of the given 
accuracy. In  fact, in virtue of the estimates (4.6) and expressions (4.7) for uTn and 
a,,, turns out to be o(s2P) because the terms in (4.7), h e a r  with respect to y 
and z ,  provide no contribution to  the shearing force. Consequently, from the 
rheological relations of the given accuracy it is impossible to  derive an explicit 
expression for the shearing force and i t  can only be determined from the solution of 
the problem. 

The fact that IQl = O(e2P) enables one to neglect the term associated with the 
shearing force in the projection of the momentum equation onto the tangent to the 
jet axis. I n  projecting the momentum equation onto the normal the terms associated 
with the longitudinal and shearing forces are of the same order of magnitude due to 
the smallness of curvature of the jet axis in the problem a t  hand. 

Using (4.8) and (4.9), we can calculate the quadratic functions and $2 explicitly: 

(4.12) 1 = i ( K Q b - k f 2 2 , - h - 1 0 n , , ) y Z  

+ $ ( A - ' Q b ,  , + Kan-?jkh-' V,, + ik2 vn) (y2-z2) + o(e3) VI), 

4% = ~ ( K Q b - k Q , - h - l Q n , , )  (22-yZ)  

+ i ( A - ' Q b ,  s + KQn-tkh-'  v,,,+$k2 vn) yz+ o(s3i V ( ) .  

From (3.13) and (4.7), taking into account the expression for the pressure (4.9), we 
find expressions of the projections of the stress moment in the cross-section in terms 
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of kinematic characteristics. More specifically, for the cross-section possessing double 
symmetry ( Ibn  = 0, I ,  = I, = I )  we have 

(4.13) i M, = 3pI(h-'SZ,, , + kn, - KSZ,), 

Mb = 3p1(h-1Q,, ,+KQn-$kh-' v,,,+$kzvn), 
M,  = pI(2h-1SZT,,+kh-1Vb,s+kKvn-kkan). 

For this cross-section, in virtue of (4.12), the terms appearing in the moment- 
of-momentum equation and associated with the integral j ,  are equal to zero with the 
required accuracy. 

It is easy to see that the system of equations of the jet dynamics (3.10)-(3.12), 
taking into account the kinematic and geometric relations of 92 and (3.13)-(3.16), 
(4.10), (4.11) and (4.13), turns out to be closed in this case. If the cross-section does 
not possess the required symmetry the problem remains unclosed insofar as the term 
jl, has been expressed through the function $3 that  remained indefinite, is significant. 
(Note that the function $3 can be determined explicitly only in the case of a jet of 
circular cross-section, but precisely in this case there is no need for the explicit 
expression for $3 because of the double symmetry.) 

It is worth noting that the inclusion of the contribution of surface tension and 
normal stresses on the lateral surface (air pressure) leads to  the following expressions 
for the stresses in the liquid inside the jet (in that case i t  is natural to consider only 
jets of circular cross-section) : 

(4.14) 

(previously the contribution of air pressure was specified only by the distributed force 
and moment q and m). 

Here a = a(s,  t )  is the radius of the jet, a is the surface-tension coefficient, G is the 
double mean curvature of the jet surface and p i  is the disturbance of air pressure 
on the jet surface with respect to p , .  The pressure p i  as a function of the jet-axis 
configuration will be defined in 95. 

One can easily see that the assumption that the liquid cross-section remains flat 
during motion is still valid and the deformation of the liquid cross-section is mainly 
isotropic. With the aid of the first equations in (4.7) and (4.9), using (4.14), we find 
the distribution of the pressure in the jet 

p = 2pf?+p[z(Kf2b-k0,- h-'an, 5)  + y(h-lQb, + Ka,-;kh-' v,,, + i k 2  v,)] 
+a[G-ku-ly(l + h - 2 u ~ s ) - % ] + p ~  (4.15) 

(cf. the last equation in (4.9)). Hence, with the aid of (3.13) and (4.7), we find new 
expressions for P, M ,  and M b :  

,- 

(4.16) I 
c I 

I 
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All the other equations and relations of the one-dimensional theory of jets remain 
unchanged; the system of equations is still closed. 

The closed system of equations thus obtained takes into account the stress moment 
and shearing force in the jet cross-section. For very thin jets the influence of the 
moment and shearing force can be neglected. As a result we obtain the closed system 
of equations of momentless theory. For example, if the jet axis is a curve lying in 
the (c, l;l)-plane then the equations of the momentless theory of bending of jets with 
the circular cross-section have the form 

aAf afw 
at as 
-+- = 0, f = na2, I 

The expression for the longitudinal force P is given by (4.16). 

5. The aerodynamic forces acting on the curved jet 
We calculate the distributed force q and moment rn applied to the jet axis. For 

this purpose we use the theory of motion of slender 'fishlike' bodies (Lighthill 1960; 
Wu 1971 ; Logvinovitch 1973). Let us introduce the Cartesian system of coordinates 
O , & J ~  whose axis 0,E coincides with the axis of an unperturbed jet and moves 
together with it with a velocity Uo in the direction 6 = - 00. We parametrize the jet 
axis in the same way as in 52, 6 = s, and write its equations in the form 

11 = H ( s ,  t ) ,  5 = Z(S, t ) ,  (5.1) 
where H and 2 are the displacements of the axis in the directions 0 , ~  and 0, y. 

First consider small three-dimensional disturbances when Hand Z are of first order, 
the higher orders of small quantities being neglected. We also neglect the change of 
the jet radius in the process of growth of small bending disturbances (we substantiate 
this in 56). The gas surrounding the jet will be considered perfect and incompressible 
and its motion will be taken to be potential. 

We then find the pressure distribution on the jet surface to be 

a a 
at as D = -+ Uo- , V,* = DH, VF = DZ 

(pa is the pressure at  infinity and p1 is the air density); the linear density of forces 
applied to the jet is 

4 = -P1 ~ f o t i ~ , s s + ~ ~ , 8 s ~ ~  fo = nag. (5.3) 
Note that in virtue of the inequality p1 4 p only the contribution of terms of order 
p1 Q will be significant in determining the dynamic action of air on the jet. 

Obviously, in the given case the linear density of the moment of external forces 
rn is zero. 
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We now generalize the result obtained to the case of finite disturbances of the jet 
axis. I n  this case we consider only the two-dimensional bending. Since only the terms 
of order p1 UE are of interest in calculating the aerodynamic force q we can consider 
the jet as stationary a t  each instant. The calculations have been carried out using 
the coordinate system adopted in $2 and associated with the curved jet axis. The 
linear density of aerodynamic force in the case of finite two-dimensional disturbances 

(5.4) 
of the jet axis is 

I n  this case, as formerly, m = 0. 
In conclusion of this section we note that the aerodynamic force calculated from 

the theory of motion of slender bodies (5.4) adequately describes the action of air flow 
on the jet only in the case of sufficiently small bending disturbances when the 
influence of the boundary layer in air is insignificant. With increasing disturbances 
their development begins to be significantly affecteci by the drag caused by the 
boundary-layer separation a t  the bends of the jet (in the case of sufficiently viscous 
liquids the air friction drag seems to be unimportant for the jet). The drag force 
deforms the bending disturbances of the jet, shaping them like a succession of 
breaking waves. A rigorous calculation of the drag distributed along the jet is 
impossible a t  present. However, qualitative information on the effect of drag on the 
development of bending disturbances of the jet can be obtained by using the empirical 
drag coefficient for the transverse flow past a cylinder. 

= -pl q , f H , , , ( l  +H:,)-%n. 

The velocity of the flow incident on the jet along the normal as y-f 00 is 

U ,  = - ZJ, H,,( 1 + H2,)-a (5 .5)  

Considering the jet of circular section and putting the drag coefficient C, = 1 (see 
(as formerly, the two-dimensional bending of the jet is considered). 

Goldstein 1938), we have for the drag the expression 

q1 = -p l  ~ a H : , ( l + H ~ , ) - l s g n ( H , , ) n .  (5 .6)  

Thus the total aerodynamic force acting on the perturbed jet is equal to the sum of 
the forces determined by (5.4) and (5.6). The drag (5 .6)  is quadratic in the amplitude 
of disturbances of the jet axis so that it need not be taken into account in the linear 
analysis to which we turn our attention now. 

6. The transverse stability of the liquid jet in the air stream 
In  this section we investigate the stability of a straight laminar jet of the 

Newtonian viscous liquid with respect to small long-wave three-dimensional bending 
disturbances. In this case the equations of the dynamics of thin liquid jets obtained 
above take the form 

1 af av, av a aK aM 
-+fo- = 0, pf, - = - (P? + Q )  + q,  p - = __ + 7 x Q,  at as at as at as 
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Here a, is the radius of the unperturbed jet. Equations (6.1) are obtained by 
linearizing the relations (3.10)-(3.12), (3.14), (4.10), (4.13) and (4.16), noting that in 
the adopted frame of reference the unperturbed jet is a t  rest while the air moves along 
its axis with the velocity Uo. It is also assumed that the normal cross-section of the 
jet is circular, and the mass forces and rotation of the liquid about the jet axis are 
absent (0, = 0). In  the moment-of-momentum equation there is no linear density of 
the moment of external forces m, since subsequently we consider the case where 
m = 0. Ml and Pl in the expressions for the moment of stresses and the value of the 
longitudinal force in the cross-section represent the terms from (4.16), which depend 
upon disturbances of the ambient air pressure, in which case it is clear that 

We calculate the moment Ml required for investigating the bending stability. The 
Cartesian coordinates introduced in $32 and 5 are related to the axes which are 
determined by the moving trihedron associated with the jet axis by the relations 

Pl P1 U k s s .  

i 7 - H = yn,  i- zb,, 

5-Z= ync+zbc. 

Here the subscripts q and 5 denote the projections of the unit normal and binormal 
vectors onto the axes 0 , ~  and 0,C respectively. The latter relations lead in the linear 
approximation to the equation 

( 7 - ~ ) H , s s + ( 5 - z ) z , s s  = kY. (6.3) 
Retaining only the terms of order p1 U: in the expression (5 .2)  for p i ,  we find 

which, taking into account (4.16), enables us to calculate the moment 

Ml = p1 Ui kIb.  (6.5) 

Projecting the momentum and moment-of-momentum equations (6.1) onto the 
normal, binormal and tangent to the jet axis and taking into account the smallness 
of the components of the velocity V and the angular velocity f2 of the liquid, we find 

a2vb a -PI--- p I - ( ~ v , )  = -- asat  at 

Here only the small quantities of the first order are retained; the projection of the 
moment-of-momentum equation onto the tangent being identically equal to zero. 

The first two equations of the system (6.6), which describe the growth of small 
axially symmetric disturbances of the jet, can be solved independently of the 
remaining ones (the growth rate of axially symmetric disturbances y1 was found by 
Weber 1931). On the other hand, the remaining equations (6.6) describe small bending 
disturbances of the liquid jet with neglect of the change in its radius. These 
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disturbances have a growth rate y for which the corresponding characteristic 
equation has been derived in this section. If the maximum value of y is much greater 
than that of y l ,  the bending disturbances grow much more rapidly than the axially 
symmetric ones; in this case it may be assumed that the jet radius remains 
unchanged. 

We have (5.3) as an expression for the aerodynamic force acting on the jet, the linear 
density of the moment of external forces is zero. Furthermore, the last four equations 
of (6.6), which describe small bendingdisturbances, aresupplemented withexpressions, 
derived from (6.1) and (6.5), for the components of the moment of stresses in the jet 

By virtue of the linearity of the problem for small bending disturbances it suffices 
to consider the helical disturbance of the jet axis 

where 1 is the disturbance wavelength. Hence the curvature and torsion are deter- 
mined by the relations 

(6.9) 

Using the kinematic relation (2.6), which relates the velocity U of the point s of the 
jet axis to the velocity V of the liquid particle located a t  this point, 

u= V - r ( V . i ) ,  U = j H , + k Z , , ,  (6.10) 

we obtain, taking into account (6.8), 

(6.11) 

J v, = 0. 

On projecting the relation (5.3) for q onto the normal and binormal to  the jet axis, 
we find with the aid of (6.8) to  the required accuracy 
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Substituting (6.9), (6.11) and (6.12) into the last four relations of (6.6) and (6.7) yields 
equations for small three-dimensional disturbances of the thin jet : 

I n  this case 
M ,  = 0. (6.14) 

Note that the equations of two-dimensional bending of the jet follow from (6.13) 
when K = Qb = 0. 

On finding the Mb from the last equation of (6.13), we obtain with the aid of the 
last but one equation of (6.13) the projection of the shearing force onto the binormal: 

(6.15) 

Then the third equation of (6.13) gives 

(6.16) 
Q, = PI--- a 2  v, ~ , U I [ & - ~ ( K ~ V ~ )  317, a 

as at 

Substituting (6.15) and (6.16) into the second equation of (6.13) leads, taking into 
account (6.9) and (6.11), to an identity, while the first equation of (6.13), with the 
use of (6.15) and (6.16), yields 

The relation thus obtained is reduced with the use of (6.9), (6.11) and (6.12) to  the 
equation 

We thus obtain the characteristic equation for small bending disturbances : 

(6.19) 

Here only the leading terms for small x are retained, because the long-wave 
approximation is considered. 

The characteristic equation (6.19) determines the growth rate of both the two- and 
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the three-dimensional disturbances of the jet axis. Therefore, in the cases of both the 
two- and three-dimensional disturbances a t  the jet velocities 

(6.20) 

(6.19) predicts instability (there is a real root y > 0), since the surface-tension forces 
fail to  oppose the dynamic action of the air. The condition (6.20) had been previously 
obtained by Debye & Daen (1959) for the two-dimensional bending of the inviscid 
liquid jet (see also Weber 1931). Thus the critical velocity value corresponding to the 
onset of bending instability is the same for two- and three-dimensional disturbances 
and is independent of viscosity. It is worth noting that the characteristic equation 
(6.19) may he obtained by means of the energy balance for small one-mode bending 
disturbance of the jet in the air stream (Entov & Yarin 1979; Yarin 1 9 8 2 ~ ) .  

An important circumstance is the fact that  the two- and three-dimensional bending 
disturbances of the jet grow with the same rate, and consequently the disintegration 
of the jet must be of a helical character. Photographs of the jet in two projections 
(Ivanov 1966) support this conclusion. 

When the inequality (6.20) holds, using (6.19) we find the dimensionless wavenumber 
x* of the most rapidly growing disturbance and the maximum growth rate y* : 

(6.21) 

If the surface tension is insignificant and the liquid is sufficiently viscous, 

(6.22) 

then the growtfh rate of axisymmetric disturbances yl* is small in comparison with 
y*.  I n  this case i t  is possible to neglect the change of jet radius, and bending 
disturbances become predominant. 

Note that the phenomenon of instability of jets with respect to  bending disturbances 
was discovered by Haenlein (1932) in experiments with castor-oil jets with the 
parameters satisfying (6.22). 

Assuming that the breakup of the jet effluent from a nozzle with a velocity U, is 
due to the most rapidly growing disturbance and occurs when the maximum 
deviation of the jet axis is of order nu, (n = 2 4 ) ,  we find the breakup length of the 

a 
a, 

P1 q % - 9 P2(pa:P1 q)-l % 1 I 

jet 
(6.23) 

Here A = In (nu,/&,), and &,, is the maximum deviation of the jet axis from the 
straight line when t = 0. The arguments in favour of the chosen break-up condition 
will be outlined in $8. As usual in the theory of jet disintegration the quality A is 
virtually an empirical constant because of the uncertainty of the value of 6,. 

In  conclusion we note that there is every reason to  believe that neglect of the 
viscosity of the air surrounding the jet leads to  overestimated values of disturbances 
of the pressure on the jet surface (Ivanov 1966; Sterling & Sleicher 1975). It appears 
that the viscosity smoothes out the streamlines calculated for the potential flow past 
the jet and thereby decreases the pressure disturbances. This circumstance can he 
taken into account by analogy with the paper by Sterling & Sleicher (1975) by 
modifying the expression (5.2) for the pressure p i  : 
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t 

FIGURE 2. Changes in the disturbance amplitude with time in the absence of the drag. (1) for the 
liquid with the viscosity p = 10 P ;  (2) p = 100 P ( 1  and 2 have been obtained by integrating the 
nonlinear equations); (3) the result of the linear theory. 

where C is an empirical constant and 0 < C < 1. In  this case in all expressions of this 
section p1 will be replaced by the product Cpl, which will lead, in particular, to an 
increase in the threshold velocity U,*. 

In  the linear analysis of the rate of growth of small bending disturbances, an 
important stabilizing factor is ignored : viscous stresses arising from extension of the 
jet axis. The influence of this and other nonlinear effects on the rate of growth of 
bending disturbances can be investigated in the numerical solution of one-dimensional 
equations of the dyna,mics of liquid jets, to which $7 is devoted. 

7. The numerical investigation of instability of thin liquid jets 
Here we outline some results of the numerical investigation into the dynamics of 

finite two-dimensional bending disturbances of a viscous liquid jet having a circular 
cross-section. First of all we discuss the variant of the problem with neglect of the 
drag. In  this case the disturbance of an infinite, initially straight jet appears as a 
standing wave with the amplitude increasing in time. For a sufficiently viscous liquid 
one can neglect the inertial terms in comparison with the viscous ones in all equations 
of the problem except for the projection of the momentum equation onto the normal 
to the jet axis (the viscous terms in this equation are small: they have the order of 
the shearing force). For details of the indicated transformations see Entov & Yarin 
( 1979) and Yarin (1 982 b). 

In  calculations the initial disturbance had prescribed values of 

27cs 
1 

V,= V T = O ,  a = a , ,  H = H , s i n - - - ,  H , = ( 5 ~ 1 0 - ~ - 5 ~ 1 0 - ~ ) 1 .  (7.1) 

The boundary conditions were obtained from the conditions of periodicity. The 
parameter s is a distance measured along the axis of the unperturbed jet Ole, 1 being 
the disturbance wavelength. 

The numerical realization of the obtained system of one-dimensional equations was 
effected with the aid of an implicit finite-difference scheme whose spectrum for small 
disturbances reproduced well the spectrum of the linearized differential problem. 

I n  calculations we investigated the development of bending disturbances of jets 
of highly viscous liquids (p = l&103 P, p = 1 g/cm3, a, = 10-1 cm) moving in a 
low-density medium (p, = lop3 g/cm3) with a velocity U, = lo3 cm/s. It is worth 
noting that in the bending of jets of highly viscous liquids the surface tension is 
negligible. 



108 V .  M .  Entov and A .  I,. Yurin 

# 
0 0.5 1 1.5 

-0.5 

FIGURE 3. Configurations of the jet axis segment corresponding t o  one disturbance wave (p = 10 P, 
the drag being taken into account). The dimensionless time is indicated with numbers by the curves. 
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FIGURE 4. Configurations of the jet axis segment corresponding to  one disturbance wave (p = 100 P, 
the drag being taken into account). The dimensionless time is indicated with numbers by the curves. 

The data obtained with neglect of the drag indicate that the small initial 
disturbance of the jet of the form (7.1) with H,  = 5 x lOP4Z grows with the rate 
predicted by the linear theory outlined in $6. This is evidenced by comparison in 
figure 2 of the slopes of the straight regions of curves 1 (p = 10 P) and 2 (p = 100 P) 
with straight line 3 corresponding to the linear theory. With a further increase in the 
amplitude of the disturbance its harmonic shape is distorted and the growth rate 
decreases. The latter takes place under the action of viscous stresses which are due 
to the nonlinear effect, namely the extension of the jet axis in bending. Here and 
elsewhere in the figures the time values are referred to  T = (ppa:/p: U:$, which is 
the timesrale of growth of bending disturbances according to the linear theory. As 
a linear scale serves the wavelength of the disturbance most rapidly growing 
according to the linear theory: 1 = 2n(9p2a~/8pp,  @)t .  I n  the case of p = 10 P the 
scales are: T = 0.0047 s, 1 = 0.943 em and in the case of p = 100 P T = 0.01 s and 
I = 2.02 em. Data are given which relate to disturbances with the wavelength to which 
the maximum growth rate a t  the linear stage corresponds. 
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FIGURE 5. The form of the jet segment a t  the moment of ‘overturning’. The dimensionless time 
is 7 (0.0329 s), the radius ranging from 65 yo to 80 yo of the initial value. 

I n  the presence of the drag and sufficiently high viscosity of the liquid, the jet 
motion can be distinctly divided into two components of different nature. One of them 
is the deformation of the jet under the action of the ‘lift’ component of the 
aerodynamic force, and the other is a drift of the jet disturbance as a whole in the 
direction of the action of the drag. As a result of the drift, the jet axis can take a 
rather complicated shape and ‘ overturns ’ occur ; therefore we have to discard the 
parametrization of the jet axis described in $2 in favour of the Lagrangian 
parametrization for which dsldt = 0. 

In  calculations with the inclusion of the drag, the evolution of one half of the 
disturbance wave was investigated. Neglect of the inertial terms, construction of the 
finite-difference scheme and the values of the parameters were the same as in the 
variant without the drag. 

I n  calculations neglecting the drag, the bending disturbances represent a system 
of standing waves with the amplitude increasing in time while the presence of drag 
leads to a drift of the disturbances by the freestream flow along the jet up to their 
overturning. Figures 3 (p = 10 P) and 4 (p = 100 P) show the form of a segment of 
the jet axis corresponding to one wavelength of disturbance at different instants 
which are marked by a number by each of the curves. The data presented in figure 
3 show that the velocity of the disturbance drift along the jet amounts to 
approximately 1.5 yo of the velocity of motion U ,  of the unperturbed jet. As a matter 
of fact, in this case the disturbances also represent ‘nearly’ standing waves in spite 
of the presence of the drag. Very rapidly ( t  = 7)  the jet axis takes the shape of a step, 
which results in an ‘overturn’. During this time the disturbance drifts with the air 
flow for approximately 0.47 cm and the jet propagates for 33 cm. 

The increase in the liquid viscosity with the other parameters left unchanged leads 
to an increase in the distance for which the disturbance wave propagates along the 
jet before overturning (see figure 4). The disturbance shape for most of the time before 
overturning is weakly dependent upon the drag and is mainly determined by the ‘lift ’ 
component of the aerodynamic force. This is readily understandable, since the drag 
is quadratic in the disturbance amplitude and, consequently, is significant only for 
sufficiently large disturbances. 
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8. Conclusion 
An important result of previous calculations is the elucidation of the fact that the 

bending deformation of a jet of a sufficiently viscous liquid is accompanied by its 
homogeneous thinning without the localization of deformation (necking) a t  any point 
of the jet. Such a synchronous thinning of the jet up to very large amplitudes of the 
bending wave means that the described quasi-one-dimensional model does not 
contain the mechanism of the jet disintegration and allows to describe only the 
predisintegration stage of deformation (see figure 5 ,  corresponding to the moment 
t = 7 of figure 3 and showing the form of the jet segment within one disturbance 
wavelength). At the same time the available experimental data on high-velocity jets 
of sufficiently viscous liquids (Haenlein 1932; Grant & Middleman 1966) enable us 
to conclude that a t  disturbance amplitudes of the order of several jet radii ( 2 4 )  the 
curved jet breaks up. The flattening of the jet section by a pressure differential 
existing on it seems to play an important part in this case. Therefore for the 
description of breakup, the one-dimensional model must be supplemented with 
equations of the evolution of the jet cross-section. Such estimates based on the energy 
balance show that after increase in the amplitude of bending disturbances up to 
the value ( 2 4 )  the cross-section of the jet is practically instantaneously flattened by 
the pressure differential on it. If it is assumed in accordance with the experimental 
data and the estimates that the breakup occurs instantaneously when the ratio of 
the bending disturbance amplitude to  the jet radius is of the order of several units 
( 2 4 ) ,  then it is possible to  estimate the length of the unbroken part of the jet from 
the time of growth of disturbances up to the indicated value (and the flattening of 
the cross-section is insignificant). In  this case, as the comparison with the data of 
numerical calculation shows, the linear theory described in $6 gives an adequate 
accuracy and i t  is possible to use (6.21) and (6.23). 
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